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Figure. S1. Typical RC architecture. The basic structure for RC is formed by an input layer, a 

reservoir, and an output layer. The input information is sent to the reservoir, whose internal 

connections act like a fixed hidden layer in artificial neural networks. The response of the 

reservoir is used to produce the desired output after an optimization procedure during the training 

process (only the output connections are adapted in the training).  
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Figure. S2. Schematic of the superpixel modulation. (a) Optical setup of the superpixel 

modulation. (b) Distribution of phase prefactors in a single superpixel of size 4×4, (c) Sum of the 

four-pixel responses in (b). (d) Complex-value modes that can be constructed using a single 

superpixel of size 4×4. 6561 different modes can be constructed.   
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Figure. S3. Schematic illustration of two typical prediction modes. (a) One-step prediction. 

The Input is an error-free observation.  I/R, input-to-reservoir; R, reservoir; R/O, reservoir-to-

output. (b) Free-running prediction.  The predicted output defines the next input.  
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Supplementary Note 

Supplementary Note 1: Reservoir Computing 

Reservoir computing (RC) is originally an RNN-based framework and is therefore suitable for 

temporal/sequential information processing. Specifically, RC is a unified computational 

framework, derived from independently proposed RNN models, such as echo state networks 

(ESNs) and liquid state machines (LSMs). A typical RC structure (Fig. S1) consists of three layers: 

input, hidden (reservoir), and output layers. The interconnections between neurons within the 

reservoir and between the three layers are represented by the matrices Wres, Win, and Wout. Other 

than the output interconnections Wout, the neuron interconnections are all random and fixed. 

Actually, the connectivity status inside the reservoir needs neither to be deliberately designed nor 

known. Moreover, the reservoir does not need to change the interconnection weights of the neurons 

during training. The above features mimic the interconnections and dynamics of biological neurons 

in human brain. 

 

In RC, input data are transformed into spatiotemporal patterns in a high-dimensional space by 

an RNN in the reservoir. Then, a pattern analysis from the spatiotemporal patterns is performed in 

the readout.  The time evolution of the neuronal states in the reservoir and the output are 

respectively described as follows: 

 ( ) ( ) ( ) ( ) ( )1 1 1 ,NL in rest f W t W t t =  + −  + − − x u x x   (1) 

and 

 ( ) ( ),outt W t=y x   (2) 

where x is the state of neurons inside the reservoir; α is the leak rate that controls the speed of the 

dynamics of the reservoir without changing its long-term stability; fNL is the nonlinear function; y 

is the output. The state evolution of the reservoir can be externally driven, which means that the 

RC framework is general, allowing other nonlinear dynamical systems to be used as reservoirs. 

 

The distinctive feature of the RC is that only the output weight matrix be trained by linear 

regression, avoiding the complex back-propagation of traditional RNNs. This simple approach 

significantly reduces the learning cost of the network. Generally, the output weight matrix can be 

obtained by the ridge regression algorithm, denoted as 

 ( )
1

,T

outW 
−

= +XX I XY   (3) 

where Y = (y(t1), y(t2), y(t3), ...) is the target output matrix; X = (x(t1), x(t2), x(t3), ...) is the total 

state matrix formed by collecting the reserve pool states together at each moment of the training 

phase; I is the unit array; λ is the regularization factor, which is important to avoid overfitting. 

Supplementary Note 2: Superpixel modulation 

According to the mechanism of superpixel modulation, the DMD is divided into superpixels: 

square groups of n×n neighboring micromirrors. A pinhole filter in the form of a circular aperture 

is placed slightly off-axis with respect to the lens L1 to allow only the first-order diffraction of the 

DMD to pass through (Fig S2). In this case, each DMD micromirror has a phase prefactor related 

to its position in the superpixel in the first-order diffraction. When a micromirror is located in the 

a-th row and b-th column within a superpixel, its phase prefactor is 2π(a/n2 + b/n). The pinhole 

filter blocks the high spatial frequencies, causing the pixels in a superpixel to become blurred and 
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their information to overlap. Therefore, the response of a superpixel is the sum of the individual 

pixel responses and can be expressed as 
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where Ψa,b represents the state (0 or 1) of the micromirror at the row a and column b. The 

superpixel technique is a very powerful tool for light modulation. When n = 4, the number of 

modulation modes of one superpixel can be as many as 6561. By turning the micromirrors on or 

off, the superpixel could modulate the complex-value information into the first-order diffraction 

of the DMD. 

Supplementary Note 3: Mackey-Glass times series 

The Mackey-Glass time series is one of the standard models used to test Reservoir Computing 

algorithms. It is derived from the famous Mackey-Glass equation in mathematical biology. The 

Mackey-Glass equation has been used to mimic both healthy and pathological behavior in certain 

biological contexts by controlling the equation's parameters. The equations are defined as: 
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Here, β, τ, n and γ are the parameters of the equation. The first term corresponds to a delayed 

response of the system, while the second term can be interpreted as a classical decay with rate γ. 

This time-delay differential equation, in appearance simple, displays chaotic behavior for certain 

parameters. In the Mackey-Glass time series prediction, the typical parameters are γ = 0.1, β = 0.2, 

n = 10 and τ = 17. The maximal Lyapunov exponent in this case is Λmax =0.006. 

Supplementary Note 4: Lyaponuv exponent 

The chaotic motion is sensitive to initial conditions. Trajectories generated from two 

infinitesimally close initial values, separates exponentially over time. This phenomenon can be 

described by the Lyaponuv exponent. For a dynamical system F(x) in a one–dimensional phase 

space, the derivative |dF/dx| determines whether the two points separate or converge after the 

iteration. If |dF/dx|>1, the iteration will separate the two points. If |dF/dx|<1, the iteration will bring 

the two points closer.  However, the motion tendency of the two points continuously changes 

throughout the iterations as the derivatives change. Therefore, an average over time (or number of 

iterations) is needed to describe the state of the two adjacent points as a whole. When the exponent 

of the separation caused by each iteration on average is denoted by Λ, the distance between two 

points originally separated by ε after n iterations can be expressed as 
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When ε → 0 and n → ∞, the above expression can be simplified as 
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It can be seen that the Λ value is independent of the initial conditions and is known as the Lyapunov 

exponent of the dynamical system. If Λ < 0, the neighboring points eventually come together and 

merge into a single point, corresponding to stable immobile points and periodic motion; if Λ > 0, 
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the neighboring points eventually separate, corresponding to the instability of the trajectories. 

Therefore, The Lyapunov index can be used as an important criterion for the existence of chaotic 

behaviors.  

 

In general, a dynamical system in an n–dimensional phase space has the spectrum of Lyapunov 

exponents {Λ1, Λ2, …, Λn}. The maximum value Λmax, in the spectrum of Lyapunov exponents, 

named maximum Lyapunov exponent, determines the speed of the divergence of trajectories.  The 

existence of dynamical chaos in a system can be intuitively determined by whether the maximum 

Lyapunov exponent is greater than zero. A positive Lyapunov exponent means that no matter how 

close two trajectory lines are initially, the difference between them will evolve at an exponential 

rate over time to be unpredictable, which is the phenomenon of chaos. Overall, the Lyapunov 

exponent gives a measure for the total predictability of a system, it characterizes quantitatively the 

rate of separation of infinitesimally close trajectories in dynamical system. 

Supplementary Note 5: Characteristics of two typical prediction modes 

The one-step prediction and free-running prediction are two typical prediction modes (Fig. S3). 

The one-step prediction mode means that only one time-step is predicted, and the input is an error-

free observation for each prediction. In this mode, the error of each time-step is independent, and 

the prediction accuracy does not degrade significantly with the increase of the time-step length. 

The free-running prediction mode allows for multi-step prediction as the current output is used as 

input for the next step. However, the prediction accuracy of free-running prediction decreases with 

increasing time-step length because the current prediction error accumulates into the next step. 

 


